МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство просвещения и воспитания Ульяновской области

Управление образования администрации города Ульяновска

МБОУ Лицей при УлГТУ

документ подписан электронной цифровой подписью

Евсеева Юлия Сергеевна директор МБОУ Лицей при УлГТУ

Сертификат: 00c5c8f4b4fb9931fa4d54d9d85455bc6e

ИНН 7325010420 / ОГРН 1027301181016
432071, сУльяновск, ул.Радицева, 102

PACCMOTPEHO

СОГЛАСОВАНО

УТВЕРЖДЕНО

Зав. кафедрой физики

Зам. директора по НМР

Директор

Бибич С.О. Протокол № 1 от «21» августа 2024 г.

Жимолостнова В.К. Протокол № 1 от «28» августа 2024 г.

Евсеева Ю.С.. Приказ № 233 от «29» августа 2024 г.

РАБОЧАЯ ПРОГРАММА

учебный предмет «Физика. Углублённый уровень»

для учащихся 8 класса

Составитель: Бибич Светлана Олимпиевна

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа составлена на основе:

- Примерной рабочей программы основного общего образования «Физика» https://fgosreestr.ru/oop/primernaia-rabochaia-programma-osnovnogo-obshchego-obrazovaniia-fizika
- Программы основного общего образования по физике и скорректирована с учетом программы «Физика 7-9» (авторы: Н. С. Пурышевой, Н. Е. Важеевской, В. М. Чаругина) системы «Вертикаль».

Программа определяет содержание и структуру учебного материала, последовательность его изучения, пути формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации учащихся. Программа используется в 8 классах в МБОУ «Ульяновский городской лицей при УлГТУ», реализующая преподавание физики на углубленном уровне.

Структура программы

Программа включает пояснительную записку, в которой прописаны требования к личностным и метапредметным результатам обучения; содержание курса с перечнем разделов с указанием числа часов, отводимых на их изучение, и требованиями к предметным результатам обучения; тематическое планирование рекомендации по оснащению учебного процесса.

При составлении данной рабочей программы были использованы следующие нормативные документы:

- 1. Федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки РФ от 17 декабря 2010 г. N 1897, с изменениями и дополнениями от: 29 декабря 2014 г., 31 декабря 2015 г., 11 декабря 2020 г. (Приказ Минобрнауки России от 29 декабря 2014 г. N 1644, Приказ Минобрнауки РФ от 31.12.2015 N 1577, Приказ Минпросвещения России от 11 декабря 2020 г. N 712).
- 2. Примерные основные образовательные программы основного общего образования, внесенных в реестр образовательных программ, одобренных федеральным учебнометодическим объединением по общему образованию (протокол от 08.04.2015 № 1/15 (в редакции протокола № 1/20 от 04.02.2020)).
- 3. Приказ Министерства просвещения РФ от 21 сентября 2022 г. N 858 "Об утверждении федерального перечня учебников, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность и установления предельного срока использования исключенных учебников" (с изменениями и дополнениями) Редакция с изменениями N 347 от 21.05.2024
- 4. Требования к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного

- образовательного стандарта (приказ Министерства образования и науки от 04.10.2010 № 986).
- 5. Распоряжение Министерства образования Ульяновской области от 31.01.2012 г. № 320-Р «О введении Федерального образовательного стандарта основного общего образования в общеобразовательных учреждениях Ульяновской области.
- 6. Основная образовательная программа основного общего образования МБОУ Лицей при УлГТУ на 2024 2025 учебный год.

Школьный курс физики — системообразующий для естественно-научных предметов, поскольку физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире.

Цели изучения физики в основной школе следующие:

- приобретение знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;
- формирование умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- понимание смысла основных научных понятий физики и взаимосвязи между ними;
- знакомство с методом научного познания и методами исследования объектов и явлений природы. Овладение общенаучными понятиями: природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;
- формирование представлений о физической картине мира;
- развитие познавательных интересов, интеллектуальных способностей учащихся, передача им опыта творческой деятельности.

В основу курса физики положен ряд идей, которые можно рассматривать как принципы его построения.

Идея целостности. В соответствии с ней курс является логически завершенным, он содержит материал из всех разделов физики, включает как вопросы классической, так и современной физики; уровень представления курса учитывает познавательные возможности учащихся.

Идея преемственности. Содержание курса учитывает подготовку, полученную учащимися на предшествующем этапе при изучении естествознания.

Идея вариативности. Ее реализация позволяет выбрать учащимся собственную «траекторию» изучения курса. Для этого предусмотрено осуществление уровневой дифференциации: в программе заложены два уровня изучения материала — обязательный, соответствующий образовательному стандарту, и повышенный.

Идея генерализации. В соответствии с ней выделены такие стержневые понятия, как энергия, взаимодействие, вещество, поле. Ведущим в курсе является и представление о структурных уровнях материи.

Идея гуманитаризации. Ее реализация предполагает использование гуманитарного потенциала физической науки, осмысление связи развития физики с развитием общества, мировоззренческих, нравственных, экологических проблем.

Идея спирального построения курса. Ее выделение обусловлено необходимостью учета математической подготовки и познавательных возможностей учащихся.

Программа разработана на основе:

- 1. Примерной программы по физике 7-9 классы. Примерные программы по учебным предметам. Физика. 7-9 классы М.: Просвещение, 2011 г. (Стандарты второго поколения) https://fgosreestr.ru;
- 2. Рабочей программы «Физика. 7 9 классы» Авторы: Н. С. Пурышева, Н. Е. Важеевская Пурышева, Н. С. (Физика. 7—9 классы : рабочая программа к линии УМК Н. С. Пурышевой, Н. Е. Важеевской : учебно-методическое пособие / Н. С. Пурышева. М. : Дрофа, 2017).

Место учебного предмета в учебном плане

В основной школе физика изучается с 7 по 9 класс. Учебный план на этапе основного общего образования выделяет 210 ч для обязательного изучения курса «Физика», из которых 189 ч составляет инвариантная часть. Оставшиеся 21 ч авторы рабочих программ могут использовать в качестве резерва времени.

Тематическое планирование для обучения в 7-9 классах может быть составлено из расчета 2 ч (общий уровень) или 3 ч (повышенный уровень) в неделю.

Согласно основной образовательной программе основного общего образования МБОУ Лицей при УлГТУ на 2024-2025 учебный год на изучение физики в 8 классе основной школы отводится 3 часа в неделю. Программа рассчитана на 102 учебных часов.

Содержание программы полностью соответствует требованиям Федерального государственного образовательного стандарта основного общего образования. Содержание курса физики является базовым звеном в системе непрерывного естественно-научного образования, служит основой для последующей уровневой и профильной дифференциации.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА

Личностными результатами обучения физике в основной школе являются:

- развитие познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- осознание необходимости применения достижений физики и технологий для рационального природопользования;
- мотивация образовательной деятельности школьников на основе личностно-ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем; развитие умения планировать в повседневной жизни свои действия с применением полученных знаний законов механики, электродинамики, термодинамики и тепловых явлений с целью сбережения здоровья.
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Метапредметные результаты обучения физике в основной школе включают межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Межпредметные понятия

Условием формирования межпредметных понятий, таких как система, факт, закономерность, феномен, анализ, синтез, является овладение обучающимися основами читательской компетенции, приобретение навыков работы с информацией, участие в проектной деятельности. В основной школе продолжается работа по формированию и развитию основ читательской компетенции. Обучающиеся овладеют чтением как средством осуществления своих дальнейших планов: продолжения образования и самообразования, осознанного планирования своего актуального и перспективного круга чтения, в том числе досугового, подготовки к трудовой и социальной деятельности. У выпускников будет сформирована потребность в систематическом чтении как средстве познания мира и себя в этом мире, гармонизации отношений человека и общества, создании образа «потребного будущего».

При изучении физики обучающиеся усовершенствуют приобретенные навыки работы с информацией и пополняют их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

- систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;
- выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий – концептуальных диаграмм, опорных конспектов);
- заполнять и дополнять таблицы, схемы, диаграммы, тексты.

В ходе изучения физики обучающиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределенности. Они получат возможность развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

Регулятивные универсальные учебные действия

- 1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
 - анализировать существующие и планировать будущие образовательные результаты;
 - идентифицировать собственные проблемы и определять главную проблему;
 - выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
 - ставить цель деятельности на основе определенной проблемы и существующих возможностей:
 - формулировать учебные задачи как шаги достижения поставленной цели деятельности;
 - обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.

- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
 - определять необходимое(ые) действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм его выполнения;
 - обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
 - определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
 - выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
 - выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
 - составлять план решения проблемы (выполнения проекта, проведения исследования);
 - определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
 - описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;
 - планировать и корректировать свою индивидуальную образовательную траекторию.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
 - определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
 - систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
 - отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
 - оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
 - находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
 - работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
 - устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
 - сверять свои действия с целью и при необходимости исправлять ошибки самостоятельно.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
 - определять критерии правильности (корректности) выполнения учебной задачи;

- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
- оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
- обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
- фиксировать и анализировать динамику собственных образовательных результатов.
- 5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности. Обучающийся сможет:
 - наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
 - соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
 - принимать решение в учебной ситуации и нести за него ответственность;
 - самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
 - ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
 - демонстрировать приемы регуляции психофизиологических/эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).

Познавательные универсальные учебные действия

- 6. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
 - подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства:
 - выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов:
 - выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
 - объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
 - выделять явление из общего ряда других явлений;
 - определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
 - строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
 - строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
 - излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;

- самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
- вербализовать эмоциональное впечатление, оказанное на него источником;
- объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
- выявлять и называть причины события, явления, в том числе возможные/наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
- делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
- 7. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
 - обозначать символом и знаком предмет и/или явление;
 - определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
 - создавать абстрактный или реальный образ предмета и/или явления;
 - строить модель/схему на основе условий задачи и/или способа ее решения;
 - создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
 - преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
 - переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
 - строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
 - строить доказательство: прямое, косвенное, от противного;
 - анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
- 8. Смысловое чтение. Обучающийся сможет:
 - находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
 - ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
 - устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
 - резюмировать главную идею текста;
 - критически оценивать содержание и форму текста.
- 9. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Обучающийся сможет:
 - определять свое отношение к природной среде;
 - анализировать влияние экологических факторов на среду обитания живых организмов;

- проводить причинный и вероятностный анализ экологических ситуаций;
- прогнозировать изменения ситуации при смене действия одного фактора на действие другого фактора;
- распространять экологические знания и участвовать в практических делах по защите окружающей среды;
- выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.
- 10. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем. Обучающийся сможет:
 - определять необходимые ключевые поисковые слова и запросы;
 - осуществлять взаимодействие с электронными поисковыми системами, словарями;
 - формировать множественную выборку из поисковых источников для объективизации результатов поиска;
 - соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные универсальные учебные действия

- 11. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
 - определять возможные роли в совместной деятельности;
 - играть определенную роль в совместной деятельности;
 - принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
 - определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
 - строить позитивные отношения в процессе учебной и познавательной деятельности;
 - корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
 - критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
 - предлагать альтернативное решение в конфликтной ситуации;
 - выделять общую току зрения в дискуссии;
 - договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
 - организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
 - устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- 12. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:

- определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
- отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
- представлять в устной или письменной форме развернутый план собственной деятельности;
- соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
- высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
- принимать решение в ходе диалога и согласовывать его с собеседником;
- создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
- использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
- использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
- делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
- 13. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ). Обучающийся сможет:
 - целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач, с помощью средств ИКТ;
 - выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
 - выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
 - использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
 - использовать информацию с учетом этических и правовых норм;
 - создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ФИЗИКЕ В ОСНОВНОЙ ШКОЛЕ.

Выпускник научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
- распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы;

Примечание. При проведении исследования физических явлений измерительные приборы используются лишь как датчики измерения физических величин. Записи показаний прямых измерений в этом случае не требуется.

- понимать роль эксперимента в получении научной информации;
- проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила, температура, атмосферное давление, влажность воздуха, напряжение, сила тока, радиационный фон (с использованием дозиметра); при этом выбирать оптимальный способ измерения и использовать простейшие методы оценки погрешностей измерений;
- проводить исследование зависимостей физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- проводить косвенные измерения физических величин: при выполнении измерений собирать экспериментальную установку, следуя предложенной инструкции, вычислять значение величины и анализировать полученные результаты с учетом заданной точности измерений;
- уметь применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- анализировать ситуации практико-ориентированного характера, узнавать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения;
- понимать принципы действия машин, приборов и технических устройств, условия их безопасного использования в повседневной жизни, рационального природопользования и охраны окружающей среды;
- докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы;
- использовать при выполнении учебных задач научно-популярную литературу о физических явлениях, справочные материалы, ресурсы Интернета.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

1. ПЕРВОНАЧАЛЬНЫЕ СВЕДЕНИЯ О СТРОЕНИИ ВЕЩЕСТВА (7 ч)

Развитие взглядов на строение вещества. Молекулы. Дискретное строение вещества. Масса и размеры молекул.

Броуновское движение. Тепловое движение молекул и атомов. Диффузия. Связь температуры тела со скоростью теплового движения частиц вещества.

Взаимодействие частиц вещества. Смачивание. Капиллярные явления.

Модели твердого, жидкого и газообразного состояний вещества и их объяснение на основе молекулярно-кинетической теории строения вещества.

Способы измерения размеров молекул. Измерение скоростей молекул. Опыт Штерна.

Лабораторные опыты

I уровень

- 1. Наблюдение делимости вещества.
- 2. Наблюдение явления диффузии в жидкостях.
- 3. Исследование зависимости скорости диффузии от температуры.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

На уровне запоминания

I уровень

Называть:

- физическую величину и ее условное обозначение: температура (t);
- единицы физических величин: °С;
- физические приборы: термометр;
- порядок размеров и массы молекул; числа молекул в единице объема;
- методы изучения физических явлений: наблюдение, гипотеза, эксперимент, теория, моделирование.

Воспроизводить:

- исторические сведения о развитии взглядов на строение вещества;
- определения понятий: молекула, атом, диффузия;
- основные положения молекулярно-кинетической теории строения вещества.

Описывать:

- явление диффузии;
- характер движения молекул газов, жидкостей и твердых тел;
- взаимодействие молекул вещества;
- явление смачивания;
- капиллярные явления;
- строение и свойства газов, жидкостей и твердых тел.

II уровень

Воспроизводить:

примеры, позволяющие оценить размеры молекул и число молекул в единице объема;

• идею опыта Штерна.

Описывать:

- способы измерения массы и размеров молекул;
- опыт Штерна.

На уровне понимания

I уровень

Приводить примеры:

- явлений, подтверждающих, что: тела состоят из частиц, между которыми существуют промежутки; молекулы находятся в непрерывном хаотическом движении; молекулы взаимодействуют между собой;
 - явлений, в которых наблюдается смачивание и несмачивание. Объяснять:
- результаты опытов, доказывающих, что тела состоят из частиц, между которыми существуют промежутки;
- результаты опытов, доказывающих, что молекулы находятся в непрерывном хаотическом движении (броуновское движение, диффузия);
 - броуновское движение;
 - диффузию;
- зависимость: скорости диффузии от температуры вещества; скорости диффузии от агрегатного состояния вещества; свойств твердых тел, жидкостей и газов от их строения;
 - явления смачивания и капиллярности.

II уровень

Объяснять:

- отличие понятия средней скорости теплового движения молекул от понятия средней скорости механического движения материальной точки;
 - результаты опыта Штерна;
- зависимость высоты подъема жидкости в капилляре от ее плотности и от диаметра капилляра.

На уровне применения в типичных ситуациях

I уровень

Уметь:

- измерять температуру и выражать ее значение в градусах Цельсия;
- обобщать на эмпирическом уровне результаты наблюдаемых экспериментов и строить индуктивные выводы;
 - применять полученные знания к решению качественных задач.

II уровень

Уметь:

• применять полученные знания к объяснению явлений, наблюдаемых в природе и в быту.

На уровне применения в нестандартных ситуациях

І уровень

Обобщать:

- полученные при изучении темы знания, представлять их в структурированном виде. Уметь:
- выполнять экспериментальные исследования, указанные в заданиях к параграфам и в рабочей тетради (явление диффузии, зависимость скорости диффузии от температуры, взаимодействие молекул, смачивание, капиллярные явления).

2. МЕХАНИЧЕСКИЕ СВОЙСТВА ГАЗОВ ЖИДКОСТЕЙ И ТВЕРДЫХ ТЕЛ (19 ч)

Давление жидкостей и газов. Объяснение давления жидкостей и газов на основе молекулярно-кинетических представлений.

Передача давления жидкостями и газами. Закон Паскаля. Давление внутри жидкости. Сообщающиеся сосуды. Гидравлические машины. Гидравлический пресс. Манометры.

Атмосферное давление. Измерение атмосферного давления. Барометры. Влияние давления на живые организмы.

Действие жидкости и газа на погруженное в них тело. Закон Архимеда. Условия плавания тел.

Изменение атмосферного давления с высотой. Плавание судов. Воздухоплавание.

Строение твердых тел. Кристаллические и аморфные тела. Деформация твердых тел. Виды деформации. Упругость, прочность, пластичность, твердость

твердых тел.

Фронтальные лабораторные работы 1 уровень

- 1. Измерение выталкивающей силы.
- 2. Изучение условий плавания тел.

Лабораторные опыты

- 1. Наблюдение роста кристаллов.
- 2.Изучение видов деформации твердых тел.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

На уровне запоминания

I уровень

Называть:

- физические величины и их условные обозначения: давление (p), объем (V), плотность (ρ) , сила (F);
 - единицы перечисленных выше физических величин;
 - физические приборы: манометр, барометр;
 - значение нормального атмосферного давления.

Воспроизводить:

- определения понятий: атмосферное давление, деформация, упругая деформация, пластическая деформация;
- формулы: давления жидкости на дно и стенки сосуда; соотношения между силами, действующими на поршни гидравлической машины, и площадью поршней; выталкивающей силы;
 - законы: Паскаля, Архимеда;
 - условия плавания тел.

Описывать:

- опыт Торричелли по измерению атмосферного давления;
- опыт, доказывающий наличие выталкивающей силы, действующей на тело, погруженное в жилкость.

Распознавать:

• различные виды деформации твердых тел.

II уровень

Называть:

- физические величины и их условные обозначения: механическое напряжение (Q), модуль Юнга (E), относительное удлинение (Δ l);
 - единицы перечисленных выше физических величин.
 - Воспроизводить:
 - определения понятий: механическое напряжение, предел прочности;
- формулы: соотношения работ малого и большого поршней гидравлической машины, КПД гидравлической машины, механического напряжения, относительного удлинения, закона Гука;
 - «золотое правило» механики;
 - закон Гука.

На уровне понимания

I уровень

Приводить примеры:

- опытов, иллюстрирующих закон Паскаля;
- опытов, доказывающих зависимость давления жидкости на дно и стенки сосуда от высоты столба жидкости и от ее плотности;
 - сообщающихся сосудов, используемых в быту, в технических устройствах;
 - различных видов деформации, проявляющихся в природе, в быту и в производстве. Объяснять:
- природу давления газа, его зависимость от температуры и объема на основе молекулярно-кинетической теории строения вещества;
 - процесс передачи давления жидкостями и газами на основе их внутреннего строения;
 - независимость давления жидкости на одном и том же уровне от направления;
 - закон сообщающихся сосудов;
 - принцип действия гидравлической машины;
- устройство и принцип действия: гидравлического пресса, ртутного барометра и барометра-анероида;
 - природу: атмосферного давления, выталкивающей силы и силы упругости;
 - плавание тел;
 - отличие кристаллических твердых тел от аморфных.

Выводить:

• формулу соотношения между силами, действующими на поршни гидравлической машины, и площадью поршней.

II уровень

Объяснять:

- анизотропию свойств монокристаллов;
- характер зависимости механического напряжения от относительного удлинения. Выводить:
- используя метод моделирования, формулы: давления жидкости на дно и стенки сосуда, выталкивающей (архимедовой) силы;
 - соотношение работ, совершаемых поршнями гидравлической машины.

На уровне применения в типичных ситуациях

І уровень

Уметь:

- измерять: давление жидкости на дно и стенки сосуда, атмосферное давление с помощью барометра-анероида;
- экспериментально устанавливать: зависимость выталкивающей силы от плотности жидкости и объема погруженной части тела, условия плавания тел.

Применять:

- закон Паскаля к объяснению явлений, связанных с передачей давления жидкостями и газами;
- формулы: для расчета давления газа на дно и стенки сосуда; соотношения между силами, действующими на поршни гидравлической машины, и площадью поршней; выталкивающей (архимедовой) силы к решению задач.

II уровень

Уметь:

• выращивать кристаллы из насыщенного раствора солей.

Применять:

- соотношение между высотой неоднородных жидкостей в сообщающихся сосудах и их плотностью к решению задач;
- «золотое правило» механики и формулу КПД к расчетам, связанным с работой гидравлической машины.

На уровне применения в нестандартных ситуациях

I уровень

Обобщать:

- «золотое правило» механики на различные механизмы (гидравлическая машина). Применять:
- метод моделирования при построении дедуктивного вывода формул: давления жидкости на дно и стенки сосуда, выталкивающей (архимедовой) силы.

Исследовать:

• условия плавания тел.

3. ТЕПЛОВЫЕ ЯВЛЕНИЯ (14 ч)

Тепловое равновесие. Температура и ее измерение. Шкала Цельсия. Абсолютная (термодинамическая) шкала температур. Абсолютный нуль.

Внутренняя энергия. Два способа изменения внутренней энергии: теплопередача и работа. Виды теплопередачи: теплопроводность, конвекция, излучение. Количество теплоты. Удельная теплоемкость вещества. Удельная теплота сгорания. Первый закон термодинамики.

Температурные шкалы Фаренгейта и Реомюра.

Работа газа при расширении.

Фронтальные лабораторные работы

I уровень

- 3. Сравнение количеств теплоты при смешивании воды разной температуры.
- 4. Измерение удельной теплоемкости вещества.

Лабораторные опыты

I уровень

- 6. Наблюдение теплопроводности воды и воздуха.
- 7. Наблюдение конвекции в жидкостях и газах.

- 8.Измерение удельной теплоты плавления льда.
- 9.Наблюдение зависимости скорости испарения жидкости от рода жидкости, площади ее поверхности, температуры и скорости удаления паров.

10.Измерение влажности воздуха.

II уровень

Наблюдение изменения внутренней энергии тела при совершении работы.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

На уровне запоминания

I уровень

Называть:

- физические величины и их условные обозначения: температура (t, T), внутренняя энергия (U), количество теплоты (Q), удельная теплоемкость (c), удельная теплота сгорания топлива (q);
 - единицы перечисленных выше физических величин;
 - физические приборы: термометр, калориметр.

Использовать:

• при описании явлений понятия: система, состояние системы, параметры состояния системы.

Воспроизводить:

- определения понятий: тепловое движение, тепловое равновесие, внутренняя энергия, теплопередача, теплопроводность, конвекция, количество теплоты, удельная теплоемкость, удельная теплота сгорания топлива;
- формулы для расчета количества теплоты, необходимого для нагревания или выделяемого при охлаждении тела; количества теплоты, выделяемого при сгорании топлива;
 - формулировку и формулу первого закона термодинамики.

Описывать:

- опыты, иллюстрирующие: изменение внутренней энергии тела при совершении работы; явления теплопроводности, конвекции, излучения;
 - опыты, позволяющие ввести понятие удельной теплоемкости.

Различать:

• способы теплопередачи.

II уровень

Воспроизводить:

• определения понятий: система, состояние системы, параметры состояния, абсолютная (термодинамическая) температура, абсолютный нуль температур.

Описывать:

• принцип построения шкал Фаренгейта и Реомюра.

На уровне понимания

I уровень

Приводить примеры:

- изменения внутренней энергии тела при совершении работы;
- изменения внутренней энергии путем теплопередачи;
- теплопроводности, конвекции, излучения в природе и в быту. Объяснять:

- особенность температуры как параметра состояния системы;
- недостатки температурных шкал;
- принцип построения шкалы Цельсия и абсолютной (термодинамической) шкалы температур;
 - механизм теплопроводности и конвекции;
- физический смысл понятий: количество теплоты, удельная теплоемкость вещества; удельная теплота сгорания топлива;
- причину того, что при смешивании горячей и холодной воды количество теплоты, отданное горячей водой, не равно количеству теплоты, полученному холодной водой;
- причину того, что количество теплоты, выделившееся при сгорании топлива, не равно количеству теплоты, полученному при этом нагреваемым телом.

Доказывать:

• что тела обладают внутренней энергией; внутренняя энергия зависит от температуры и массы тела, а также от его агрегатного состояния и не зависит от движения тела как целого и от его взаимодействия с другими телами.

II уровень

Выводить:

• формулу работы газа в термодинамике.

На уровне применения в типичных ситуациях

I уровень

Уметь:

- переводить значение температуры из градусов Цельсия в кельвины и обратно;
- пользоваться термометром;
- экспериментально измерять: количество теплоты, полученное или отданное телом; удельную теплоемкость вещества.

Применять:

- знания молекулярно-кинетической теории строения вещества к объяснению понятия внутренней энергии;
- формулы для расчета: количества теплоты, полученного телом при нагревании и отданного при охлаждении; количества теплоты, выделяющегося при сгорании топлива, к решению задач.

II уровень

Уметь:

• вычислять погрешность косвенных измерений на примере измерения удельной теплоем-кости вещества.

Применять:

- формулу работы газа в термодинамике к решению тренировочных задач;
- уравнение теплового баланса при решении задач на теплообмен;
- первый закон термодинамики к решению задач.

На уровне применения в нестандартных ситуациях

I уровень

Уметь:

- учитывать явления теплопроводности, конвекции и излучения при решении простых бытовых проблем (сохранение тепла или холода, уменьшение или усиление конвекционных потоков, увеличение отражательной или поглощательной способности поверхностей);
- выполнять экспериментальное исследование при использовании частично-поискового метода.

Обобщать:

- знания о способах изменения внутренней энергии и видах теплопередачи. Сравнивать:
- способы изменения внутренней энергии;
- виды теплопередачи.

II уровень

Уметь:

• выполнять исследования при проведении лабораторных работ.

4. ИЗМЕНЕНИЕ АГРЕГАТНЫХ СОСТОЯНИЙ ВЕЩЕСТВА (8 ч)

Плавление и отвердевание. Температура плавления. Удельная теплота плавления.

Испарение и конденсация. Насыщенный пар. Кипение. Зависимость температуры кипения от давления. Удельная теплота парообразования. Влажность воздуха. Измерение влажности воздуха.

Лабораторные опыты

I уровень

Наблюдение процессов плавления и отвердевания.

Наблюдение зависимости скорости испарения жидкости от рода жидкости, площади ее поверхности, температуры и скорости удаления паров.

Измерение влажности воздуха.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

На уровне запоминания

I vровень

Называть:

- физические величины и их условные обозначения: удельная теплота плавления (q), удельная теплота парообразования (L), абсолютная влажность воздуха (ρ), относительная влажность воздуха (φ);
 - единицы перечисленных выше физических величин;
 - физические приборы: термометр, гигрометр.

Воспроизводить:

- определения понятий: плавление и кристаллизация, температура плавления (кристаллизации), удельная теплота плавления (кристаллизации), парообразование, испарение, кипение, конденсация, температура кипения (конденсации), удельная теплота парообразования (конденсации), насыщенный пар, абсолютная влажность воздуха, относительная влажность воздуха, точка росы;
- формулы для расчета: количества теплоты, необходимого для плавления (кристаллизации); количества теплоты, необходимого для кипения (конденсации); относительной влажности воздуха;

• графики зависимости температуры вещества от времени при нагревании (охлаждении), плавлении (кристаллизации), кипении (конденсации).

Описывать:

• наблюдаемые явления превращения вещества из одного агрегатного состояния в другое.

II уровень

Воспроизводить:

• понятие динамического равновесия между жидкостью и ее паром.

На уровне понимания

І уровень

Приводить примеры:

• агрегатных превращений вещества.

Объяснять на основе молекулярно-кинетической теории строения вещества и энергетических представлений:

- процессы: плавления и отвердевания кристаллических тел, плавления и отвердевания аморфных тел, парообразования, испарения, кипения и конденсации;
 - понижение температуры жидкости при испарении.

Объяснять на основе молекулярно-кинетической теории строения вещества:

- зависимость скорости испарения жидкости от ее температуры, от рода жидкости, от движения воздуха над поверхностью жидкости;
 - образование насыщенного пара в закрытом сосуде;
 - зависимость давления насыщенного пара от температуры.

Объяснять:

- графики зависимости температуры вещества от времени при его плавлении, кристаллизации, кипении и конденсации;
- физический смысл понятий: удельная теплота плавления (кристаллизации), удельная теплота парообразования (конденсации).

II уровень

Объяснять:

- зависимость температуры кипения от давления;
- зависимость относительной влажности воздуха от температуры.

Понимать:

• что плавление и кристаллизация, испарение и конденсация — противоположные процессы, происходящие одновременно.

На уровне применения в типичных ситуациях

I уровень

Уметь:

- строить график зависимости температуры тела от времени при нагревании, плавлении, кипении, конденсации, кристаллизации, охлаждении;
 - находить из графиков значения величин и выполнять необходимые расчеты;
- определять по значению абсолютной влажности воздуха, выпадет ли роса при понижении температуры до определенного значения.

Применять:

• формулы: для расчета количества теплоты, полученного телом при плавлении или отданного при кристаллизации; количества теплоты, полученного телом при кипении или отданного при конденсации; относительной влажности воздуха.

II уровень

Применять:

• уравнение теплового баланса при расчете значений величин, характеризующих процессы плавления (кристаллизации), кипения (конденсации).

На уровне применения в нестандартных ситуациях І уровень

Обобщать:

- знания об агрегатных превращениях вещества и механизме их протекания;
- знания об удельных величинах, характеризующих агрегатные превращения вещества (удельная теплота плавления, удельная теплота парообразования).

Сравнивать:

• удельную теплоту плавления (кристаллизации) и удельную теплоту кипения (конденсации) по графику зависимости температуры разных веществ от времени; процессы испарения и кипения.

5. ТЕПЛОВЫЕ СВОЙСТВА ГАЗОВ, ЖИДКОСТЕЙ И ТВЕРДЫХ ТЕЛ (7 ч).

Зависимость давления газа данной массы от объема и температуры, объема газа данной массы от температуры (качественно).

Применение газов в технике.

Тепловое расширение жидкостей (качественно). Тепловое расширение воды.

Тепловое расширение твердых тел (качественно).

Принципы работы тепловых машин. КПД тепловой машины. Двигатель внутреннего сгорания, паровая турбина, холодильник. Тепловые двигатели и охрана окружающей среды. Основные направления совершенствования тепловых двигателей.

Модель идеального газа.

Законы Бойля—Мариотта, Шарля, Гей-Люссака, объединенный газовый закон.

Формулы теплового расширения жидкостей и твердых тел.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

На уровне запоминания

I уровень

Называть:

- физические величины и их условные обозначения: давление (p), объем (V), температура (T,t);
 - единицы этих физических величин: Па, M^3 , K, $^{\circ}C$;
 - основные части любого теплового двигателя;
 - примерное значение КПД двигателя внутреннего сгорания и паровой турбины. Воспроизводить:
 - формулы: линейного расширения твердых тел, КПД теплового двигателя;
 - определения понятий: тепловой двигатель, КПД теплового двигателя. Описывать:
 - опыты, позволяющие установить законы идеального газа;
 - устройство двигателя внутреннего сгорания и паровой турбины.

II уровень

Называть:

- физическую величину и ее условное обозначение: температурный коэффициент объемного расширения (β);
 - единицы физических величин: град $^{-1}$ или K^{-1} . Воспроизводить:
 - определения понятий: абсолютный нуль температуры.

На уровне понимания I уровень

Приводить примеры:

- опытов, позволяющих установить для газа данной массы зависимость давления от объема при постоянной температуре, объема от температуры при постоянном давлении, давления от температуры при постоянном объеме;
 - учета в технике теплового расширения твердых тел;
 - теплового расширения твердых тел и жидкостей, наблюдаемого в природе и технике. Объяснять:
 - газовые законы на основе молекулярно-кинетической теории строения вещества;
 - принцип работы двигателя внутреннего сгорания и паровой турбины.

Понимать:

- границы применимости газовых законов;
- почему и как учитывают тепловое расширение в технике;
- необходимость наличия холодильника в тепловом двигателе;
- зависимость КПД теплового двигателя от температуры нагревателя и холодильника.

II уровень

Объяснять:

- связь между средней кинетической энергией теплового движения молекул и абсолютной температурой;
 - физический смысл абсолютного нуля температуры.

Понимать:

- смысл понятий: температурный коэффициент расширения (объемного и линейного);
- причину различия теплового расширения монокристаллов и поликристаллов.

На уровне применения в типичных ситуациях

I уровень

Уметь:

- строить и читать графики изопроцессов в координатах p, V; V, T и p, T. Применять:
- формулы газовых законов к решению задач.

На уровне применения в нестандартных ситуациях І уровень

Обобщать знания:

- о газовых законах;
- о тепловом расширении газов, жидкостей твердых тел;
- о границах применимости физических законов;
- о роли физической теории.

Сравнивать:

• по графикам процессов изменения состояния идеального газа неизменные параметры состояния при двух изменяющихся параметрах.

6. ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ (5 ч)

Электростатическое взаимодействие. Электрический заряд. Два рода электрических зарядов. Электроскоп.

Дискретность электрического заряда. Строение атома. Электрон и протон. Элементарный электрический заряд. Электризация тел. Закон сохранения электрического заряда. Проводники, диэлектрики,

полупроводники.

Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля. Электрическое поле точечных зарядов и двух заряженных пластин.

Учет и использование электростатических явлений в быту, технике, их проявление в природе. Закон Кулона.

Проводники и диэлектрики в электрическом поле.

Электростатическая индукция.

Лабораторные опыты

I уровень

Наблюдение электризации тел и взаимодействия наэлектризованных тел.

Изготовление простейшего электроскопа.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

На уровне запоминания

I уровень

Называть:

- физические величины и их условные обозначения: электрический заряд (q), напряженность электрического поля (E);
 - единицы этих физических величин: Кл, Н/Кл;
- понятия: положительный и отрицательный электрический заряд, электрон, протон, нейтрон;
 - физические приборы и устройства: электроскоп, электрометр, электрофорная машина. Воспроизводить:
- определения понятий: электрическое взаимодействие, электризация тел, проводники и диэлектрики, положительный и отрицательный ион, электрическое поле, электрическая сила, напряженность электрического поля, линии напряженности электрического поля;
 - закон сохранения электрического заряда.

Описывать:

- наблюдаемые электрические взаимодействия тел, электризацию тел;
- модели строения простейших атомов.

II уровень

Воспроизводить:

- определение понятия точечного заряда;
- закон Кулона.

На уровне понимания

I уровень

Объяснять:

• физические явления: взаимодействие наэлектризованных тел, явление электризации;

- модели: строения простейших атомов, линий напряженности электрических полей;
- принцип действия электроскопа и электрометра;
- электрические особенности проводников и диэлектриков;
- природу электрического заряда.

Понимать:

существование в природе противоположных электрических зарядов;

дискретность электрического заряда;

смысл закона сохранения электрического заряда, его фундаментальный характер;

объективность существования электрического поля;

векторный характер напряженности электрического поля (E).

II уровень

Объяснять:

- принцип действия крутильных весов;
- возникновение электрического поля в проводниках и диэлектриках;
- явления: электризации через влияние, электростатической защиты.

Понимать:

- относительный характер результатов наблюдений и экспериментов;
- экспериментальный характер закона Кулона;
- существование границ применимости закона Кулона;
- роль моделей в процессе физического познания (на примере линий напряженности электрического поля и моделей строения атомов).

На уровне применения в типичных ситуациях I vровень

Уметь:

- анализировать наблюдаемые электростатические явления и объяснять причины их возникновения;
- определять неизвестные величины, входящие в формулу напряженности электрического поля:
 - анализировать и строить картины линий напряженности электрического поля;
 - анализировать и строить модели атомов и ионов.

Применять:

• знания по электростатике к анализу и объяснению явлений природы и техники.

II уровень

Уметь:

• выполнять самостоятельно наблюдения и эксперименты по электризации тел, анализировать и оценивать их результаты.

Применять:

• полученные знания к решению комбинированных задач по электростатике.

На уровне применения в нестандартных ситуациях

І уровень

Уметь:

- анализировать неизвестные ранее электрические явления;
- применять полученные знания для объяснения неизвестных ранее явлений и процессов. Обобщать:

• результаты наблюдений и теоретических построений.

II уровень

Устанавливать аналогию:

• между законом Кулона и законом всемирного тяготения.

Использовать:

• методы познания: эмпирические (наблюдение и эксперимент), теоретические (анализ, обобщение, моделирование, аналогия, индукция) при изучении электрических явлений.

7. ЭЛЕКТРИЧЕСКИЙ ТОК (24 ч)

Постоянный электрический ток. Источники постоянного электрического тока. Носители свободных электрических зарядов в металлах, электролитах, газах и полупроводниках.

Действия электрического тока: тепловое, химическое, магнитное.

Электрическая цепь. Сила тока. Измерение силы

тока.

Напряжение. Измерение напряжения.

Электрическое сопротивление. Удельное сопротивление. Реостаты.

Закон Ома для участка цепи. Последовательное и параллельное соединения проводников.

Работа и мощность электрического тока. Счетчик электрической энергии. Закон Джоуля— Ленпа.

Использование электрической энергии в быту, природе и технике.

Гальванические элементы и аккумуляторы.

Фронтальные лабораторные работы

1 уровень

ЛР № 5. Сборка электрической цепи и измерение силы тока на ее различных участках.

ЛР № 6. Измерение напряжения на различных участках цепи.

ЛР № 7. Измерение сопротивления проводника с помощью амперметра и вольтметра.

ЛР № 8. Регулирование силы тока реостатом.

ЛР № 9. Изучение последовательного соединения проводников.

ЛР № 10. Изучение параллельного соединения проводников.

2 уровень

ЛР № 11. Измерение работы и мощности электрического тока.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

На уровне запоминания

I уровень

Называть:

- физические величины и их условные обозначения: сила тока (I), напряжение (U), электрическое сопротивление (R), удельное сопротивление (ρ);
 - единицы перечисленных выше физических величин;
- понятия: источник тока, электрическая цепь, действия электрического тока (тепловое, химическое, магнитное);
- физические приборы и устройства: источники тока, элементы электрической цепи, гальванометр, амперметр, вольтметр, реостат, ваттметр.

Воспроизводить:

• определения понятий: электрический ток, анод, катод, сила тока, напряжение, сопротивление, удельное сопротивление, последовательное и параллельное соединение проводников, работа и мощность электрического тока;

- формулы: силы тока, напряжения и сопротивления при последовательном и параллельном соединении проводников; сопротивления проводника (через удельное сопротивление, длину и площадь поперечного сечения проводника); работы и мощности электрического тока;
 - законы: Ома для участка цепи. Джоуля-Ленца.

Описывать:

• наблюдаемые действия электрического тока.

На уровне понимания

I уровень

Объяснять:

- условия существования электрического тока;
- природу электрического тока в металлах;
- явления, иллюстрирующие действия электрического тока (тепловое, магнитное, химическое);
 - последовательное и параллельное соединение проводников;
- графики зависимости: силы тока от напряжения на концах проводника, силы тока от сопротивления проводника;
- механизм нагревания металлического проводника при прохождении по нему электрического тока.

Понимать:

- превращение внутренней энергии в электрическую в источниках тока;
- природу химического действия электрического тока;
- физический смысл электрического сопротивления проводника и удельного сопротивления;
 - способ подключения амперметра и вольтметра в электрическую цепь.

II уровень

Объяснять:

- устройство и работу элемента Вольта и сухого гальванического элемента;
- принцип работы аккумулятора.

Понимать:

• основное отличие гальванического элемента от аккумулятора.

На уровне применения в типичных ситуациях

I уровень

Уметь:

- анализировать наблюдаемые явления и объяснять причины их возникновения;
- вычислять неизвестные величины, входящие в закон Ома и закон Джоуля-Ленца, в формулы последовательного и параллельного соединения проводников;
 - собирать электрические цепи;
- пользоваться: измерительными приборами для определения силы тока в цепи и электрического напряжения, реостатом;
 - чертить схемы электрических цепей;
- читать и строить графики зависимости: силы тока от напряжения на концах проводника и силы тока от сопротивления проводника.

II уровень

Уметь:

- выполнять самостоятельно наблюдения и эксперименты;
- анализировать и оценивать результаты наблюдения и эксперимента.

На уровне применения в нестандартных ситуациях I уровень

Уметь:

- применять изученные законы и формулы к решению комбинированных задач. Обобщать:
- результаты наблюдений и теоретических построений. Применять:
- полученные знания для объяснения неизвестных ранее явлений и процессов.

8. ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ (13 часов)

Постоянные магниты. Магнитное поле. Магнитное поле Земли. Магнитное поле электрического тока. Применение магнитов. Сборка электромагнитов и его испытание. Действие магнитного поля на проводник с током. Электродвигатель.

Фронтальные лабораторные работы.

І уровень

- ЛР № 12. Изучение поля постоянных магнитов.
- ЛР № 13. Сборка электромагнита и его испытание.
- ЛР № 14. Изучение действия магнитного поля на проводник с током.
- ЛР № 15. Изучение работы электродвигателя постоянного тока.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

На уровне запоминания

І уровень

Называть:

- физическую величину и ее условное обозначение: магнитная индукция (В);
- единицу этой величины: Тл;
- физические устройства: электромагнит, электродвигатель.

Воспроизводить:

- определения понятий: северный и южный магнитный полюсы, линии магнитной индукции, однородное магнитное поле;
 - правила: правило буравчика, правило левой руки;
 - формулы: модуля вектора магнитной индукции, силы Ампера.

Описывать:

- наблюдаемые взаимодействия постоянных магнитов, проводников с током, магнитов и проводников с током;
 - опыты: опыт Эрстеда, опыт Ампера.

На уровне понимания

I уровень

Объяснять:

- физические явления: взаимодействие постоянных магнитов, проводников с током, магнитов и проводников с током;
 - смысл понятий: магнитное поле, линии магнитной индукции;
 - принцип действия и устройство электродвигателя.

Понимать:

- объективность существования магнитного поля;
- взаимосвязь магнитного поля и электрического тока;
- модельный характер линий магнитной индукции;
- смысл гипотезы Ампера о взаимосвязи магнитного поля и движущихся электрических зарядов.

П уровень

Понимать:

- роль эксперимента в изучении электромагнитных явлений;
- роль моделей в процессе физического познания (на примере линий индукции магнитного поля).

На уровне применения в нестандартных ситуациях

I уровень

Уметь:

- анализировать наблюдаемые электромагнитные явления и объяснять причины их возникновения;
- определять неизвестные величины, входящие в формулы: модуля вектора магнитной индукции, силы Ампера, магнитного потока, индуктивности, коэффициента трансформации;
- определять направление: вектора магнитной индукции различных магнитных полей; силы, действующей на проводник с током в магнитном поле;
 - анализировать и строить картины линий индукции магнитного поля;
 - наблюдать взаимодействие магнитов;
 - наблюдать и исследовать действие магнитного поля на проводник с током;
- исследовать зависимость действия магнитного поля катушки с током при увеличении силы тока и при помещении внутри катушки железного сердечника.

Применять:

- знания по электромагнетизму к анализу и объяснению явлений природы.

II уровень

Уметь:

- анализировать и оценивать результаты наблюдения и эксперимента.

Применять:

- полученные знания к решению комбинированных задач по электромагнетизму.

На уровне применения в нестандартных ситуациях

І уровень

Уметь:

- анализировать электромагнитные явления;
- сравнивать: картины линий магнитной индукции различных полей; характер линий магнитной индукции магнитного поля и линий напряженности электростатического поля; электродвигатель и тепловой двигатель;
 - -обобщать результаты наблюдений и теоретических построений;
 - применять полученные знания для объяснения явлений и процессов.

9. ПОВТОРЕНИЕ (4 часа)

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№	Раздел	IC a way a comp of	Вид занятий (количество часов)		
Л2 П/П		Количество часов	Лабораторные ра- боты	Контрольные рабо- ты	
1	Первоначальные сведения о строении вещества	7	-		
2	Механические свой- ства жидкостей, га- зов и твердых тел	19	2	1	
3	Тепловые явления	14	2	1	
4	Изменение агрегат- ных состояний веще- ства	8	-	1	
5	Тепловые свойства газов, жидкостей и твердых тел	7	-	-	
6	Электрические явления	5			
7	Электрический ток	24	7	1	
8	Электромагнитные явления	13	4	1	
8	Повторение	3	-		
9	Резерв	2			
10	Итого	102	15	5	

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

№	Тема урока		Дата			
п/п		Всего	Контрольные работы	Лабораторные работы	изучения	
ПЕ	ПЕРВОНАЧАЛЬНЫЕ СВЕДЕНИЯ О СТРОЕНИИ ВЕЩЕСТВА (7 часов)					
1.	Развитие взглядов на строение вещества. Строение вещества.	1				
2.	Молекулы.	1				
3.	Движение молекул. Диффузия.	1				
4.	Взаимодействие молекул.	1				
5.	Смачивания. Капиллярные явления.	1				
6.	Строение газов, жидкостей и твердых тел.	1				
7.	Повторение и обобщение темы. Проверочная работа «Первоначальные сведения о строении вещества».	1				
ME	ХАНИЧЕСКИЕ СВОЙСТВА ЖІ	идкост:	ЕЙ, ГАЗОВ И ТВ	ВЕРДЫХ ТЕЛ (19	часов)	
8.	Давление жидкостей и газов. Закон Паскаля.	1				
9.	Давление в жидкости и газе.	1				
10.	Расчет давления жидкости на дно и стенки сосуда.	1				
11.	Решение задач.	1				
12.	Сообщающиеся сосуды.	1				
13.	Решение задач. Проверочная работа.					
14.	Гидравлическая машина. Гидравлический пресс.	1				
15.	Атмосферное давление.	1				
16.	Измерение атмосферного давления. Влияние атмосферного давления на живой организм.	1				
17.	Действие жидкости и газа на погруженное в них тело. Закон Архимеда.	1				
18.	Решение задач.	1				
19.	Лабораторная работа № 1 «Из- мерение выталкивающей силы».	1		1		
20.	Условия плавания тел.	1				
21.	Лабораторная работа № 2 «Изучение условий плавания тел».	1		1		

No	Тема урока	Количество часов			Дата
п/п		Всего	Контрольные работы	Лабораторные работы	изучения
22.	Плавание судов. Воздухоплавание.	1			
23.	Решение задач. Подготовка к контрольной работе.				
24.	Контрольная работа № 1 «Ме- ханические свойства жидкостей и газов».	1	1		
25.	Строение твердых тел. Кристаллические и аморфные тела. Свойства твердых тел.	1			
26.	Деформация твердых тел. Виды деформации.	1			
TEI	ПЛОВЫЕ ЯВЛЕНИЯ (14 часов)				
27.	Тепловое движение. Тепловое равновесие. Температура.	1			
28.	Внутренняя энергия. Способы изменения внутренней энергии.	1			
29.	Теплопроводность.	1			
30.	Конвекция. Излучение.	1			
31.	Количество теплоты. Удельная теплоемкость вещества.	1			
32.	Решение задач.	1			
33.	Лабораторная работа № 3 «Сравнение количества теплоты при смешивании воды разной температуры».	1		1	
34.	Уравнение теплового баланса.	1			
35.	Решение задач.	1			
36.	Лабораторная работа № 4 «Из- мерение удельной теплоемко- сти вещества».	1		1	
37.	Энергия топлива. Удельная теплота сгорания.	1			
38.	Решение задач. Подготовка к контрольной работе.	1			
39.	Контрольная работа № 2 «Количество теплоты».	1	1		
40.	Анализ контрольной работы. Первый закон термодинамики.	1			
изм	МЕНЕНИЕ АГРЕГАТНЫХ СОС	гояний	і ВЕЩЕСТВА (8	часов)	
41.	Плавление и отвердевание кристаллических веществ. График	1			

№	Тема урока	Количество часов			Дата
п/п		Всего	Контрольные работы	Лабораторные работы	изучения
	плавления и отвердевания.				
42.	Удельная теплота плавления.	1			
43.	Решение задач.	1			
44.	Испарение и конденсация.	1			
45.	Кипение. Удельная теплота парообразования.	1			
46.	Влажность воздуха.	1			
47.	Решение задач.	1			
48.	Контрольная работа № 3 «Из- менение агрегатных состояний вещества».	1	1		
TEI	ПЛОВЫЕ СВОЙСТВА ГАЗОВ, Х	кидкос	ТЕЙ И ТВЕРДЫ	ІХ ТЕЛ (7 часов)	
49.	Анализ контрольной работы. Связь между параметрами состояний газа.	1			
50.	Решение задач.	1			
51.	Применение газов в технике.	1			
52.	Тепловое расширение твердых тел и жидкостей.	1			
53.	Принципы работы тепловых двигателей.	1			
54.	Двигатель внутреннего сгорания. Паровая турбина.	1			
55.	Решение задач.	1			
ЭЛІ	ЕКТРИЧЕСКИЕ ЯВЛЕНИЯ (5 ч	асов)			
56.	Электрический заряд. Делимость электрического заряда.	1			
57.	Строение атома. Электризация. Закон Кулона.	1			
58.	Электрическое поле. Напряженность электрического поля.	1			
59.	Проводники и диэлектрики.	1			
60.	Повторение и обобщение темы «Основные понятия и законы электростатики».	1			
ЭЛІ	ЕКТРИЧЕСКИЙ ТОК (24 часа)	1	<u>I</u>	1	I
61.	Электрический ток. Источники электрического тока.	1			
62.	Действия электрического тока. Электрическая цепь.	1			
63.	Сила тока. Амперметр.	1			

№ п/п	Тема урока	Количество часов			Дата
		Всего	Контрольные работы	Лабораторные работы	изучения
64.	Лабораторная работа № 5 «Сборка электрической цепи и измерение силы тока на различных ее участках».	1		1	
65.	Электрическое напряжение. Вольтметр.	1			
66.	Лабораторная работа № 6 «Из- мерение напряжения на различ- ных участках цепи».	1		1	
67.	Сопротивление проводника.	1			
68.	Лабораторная работа № 7 «Из- мерение сопротивления про- водника с помощью вольтметра и амперметра».	1		1	
69.	Решение задач.	1			
70.	Проверочная работа «Сила то- ка. Напряжение. Сопротивле- ние».	1			
71.	Расчет сопротивления проводника. Реостаты.	1			
72.	Решение задач.	1			
73.	Лабораторная работа № 8 «Регулирование силы тока реостатом».	1		1	
74.	Закон Ома для участка цепи.	1			
75.	Решение задач.	1			
76.	Последовательное соединение проводников.	1			
77.	Лабораторная работа № 9 «Изучение последовательного соединения проводников».	1		1	
78.	Параллельное соединение проводников.	1			
79.	Лабораторная работа № 10 «Изучение параллельного соединения проводников».	1		1	
80.	Решение задач.	1			
81.	Работа и мощность электрического тока.	1			
82.	Лабораторная работа № 11 «Измерение работы и мощности электрического тока».	1		1	
83.	Решение задач. Повторение и	1			

N₂	Тема урока	Количество часов			Дата
п/п		Всего	Контрольные работы	Лабораторные работы	изучения
	обобщение.				
84.	Контрольная работа № 4 «Электрический ток. Законы электрического тока».	1	1		
ЭЛ	ЕКТРОМАГНИТНЫЕ ЯВЛЕНИ	Я (13 час	ов)		
85.	Анализ контрольной работы. Постоянные магниты.	1			
86.	Лабораторная работа № 12 «Изучение поля постоянных магнитов».	1		1	
87.	Магнитное поле.	1			
88.	Магнитное поле Земли.	1			
89.	Магнитное поле электрического тока.	1			
90.	Применение магнитов.	1			
91.	Лабораторная работа № 13 «Сборка электромагнита и его испытание».	1		1	
92.	Действие магнитного поля на проводник с током.	1			
93.	Лабораторная работа № 14 «Изучение действия магнитного поля».	1		1	
94.	Электродвигатель	1			
95.	Лабораторная работа № 15 «Изучение работы электродвигателя постоянного тока».	1		1	
96.	Контрольная работа № 5 «Электромагнитные явления».	1	1		
97.	Анализ контрольной работы.	1			
ПО	ВТОРЕНИЕ И ОБОБЩЕНИЕ (4	часа)			
98.	Повторение темы «Механиче- ские свойства жидкостей, газов и твердых тел».	1			
99.	Повторение темы «Тепловые явления».	1			
100.	Повторение темы «Электриче- ский ток».	1			
PE3	ВЕРВ				
101.	Резерв	1			
102.	Резерв	1			

учебно-методический комплект

- 1. Пурышева Н.С. Физика. 8 кл.: учебник / Н.С. Пурышева, Н.Е. Важеевская. 4-е изд., стереотип. М.: Дрофа.
- 2. Пурышева Н.С. Физика. 8 кл.: рабочая тетрадь (авторы Н.С. Пурышева, Н.Е.Важеевская)
- 3. Пурышева Н.С. Физика. 8 кл.: Методическое пособие для учителей (авторы Н.С. Пурышева, Н.Е. Важеевская).
- 4. Сборник задач по физике для 7–9 классов образовательных учреждений (автор В.И. Лукашик, Е.В. Иванова).
- 5. Лабораторные работы по физике 8 классы. Электронное учебное издание.
- 6. Пурышева Н.С. Физика. 8 кл.: Проверочные и контрольные работы (авторы Н.С. Пурышева, О.В. Лебедева, Н.Е. Важеевская).
- 7. Электронное приложение к учебнику. www.drofa.ru